

Towards an ultra-high resolution 3D neurotransmitter receptor atlas

BIG BRAIN WORKSHOP 2020 | THOMAS FUNCK, PHD

Creating neurotransmitter receptor atlases

Characterize normal + pathologic receptor distributions
 Chemoarchitecture of information processing

Creating neurotransmitter receptor atlases

- Characterize normal + pathologic receptor distributions
- Autoradiography
 - + High resolution (0.05mm)
 - + More ligands than PET
 - Extremely expensive
 - Only 2D images
 - Post-mortem

Creating neurotransmitter receptor atlases

- Characterize normal + pathologic receptor distributions
- Autoradiography

• PET

- + In vivo
- + Relatively inexpensive \rightarrow larger data sets
- Lower resolution \rightarrow what is maximum resolution of PET?

Norgaard, et al. 2020 (preprint)

Beliveau, et al. 2017

Reconstructing 3D atlases from 2D autoradiographs

The data

Brain extracted and cut into 2-3cm slabs

Slabs shock frozen ~-40C

Slabs sectioned and bathed in solution with radioligand

Raw autoradiographs transformed to binding densities

The data

- 3 post-mortem human brains
- 20 receptor binding sites
 - visualized with quantitative in vitro receptor autoradiography
 - $^{\circ}$ acquired sequentially $\rightarrow ~400\mu$ m+ between particular receptor

Autoradiographs

- 3 post-mortem human brains
- 20 receptor binding sites
 - visualized with quantitative in vitro receptor autoradiography
 - acquired sequentially $\rightarrow ~400 \mu$ m+ between particular receptor

Autoradiographs

	RAR	200 A 1902	A BRA	100000				
	code	Radiolabeled	receptor	Transmitter				
Sa		ligand						
	AMPA	AMPA	AMPA	Glutamate				
	KAIN	Kainate	Kainate	Glutamate				
	MK80	MK-801	NMDA	Glutamate				
	LY34	LY 341,495	mGluR2/3	Glutamate				
210	MUSC	muscimol	GABA _A (agonist binding site)	GABA				
RR	SR95	SR95531	GABA _A (antagonist binding site)	GABA				
	CGP5	CGP 54626	GABA _B	GABA				
	FLUM	flumazenil	GABA _A associated benzodiazepine binding sites	GABA				
	PIRE	Pirenzepine	muscarinic M1	Acetylcholine				
AC	OXOT	Oxotremorine-M	muscarinic M ₂ (agonist binding site)	Acetylcholine				
en	AFDX	AF-DX384	muscarinic M_2 (antagonist binding site)	Acetylcholine				
	DAMP	4-DAMP	muscarinic M ₃	Acetylcholine				
-06	EPIB	epibatidine	Nicotinic $\alpha_4\beta_2$	Acetylcholine				
	PRAZ	prazosin	α1	Noradrenalin				
	UK14	UK-14,304	α_2 (agonist binding site)	Noradrenalin				
73	RX82	RX 821002	α_2 (antagonist binding site)	Noradrenalin				
Crr	DPAT	8-OH-DPAT	5-HT1A	Serotonin				
	KETA	ketanserin	5-HT ₂	Serotonin				
	SCH2	SCH 23390	D1	Dopamine				
	DPMG	DPCPX	Adenosine 1	Adenosine				
22		250						

Chart from Nicola Palomero-Gallagher

Challenges to 3D Reconstruction

(I) Autoradiograph intensities

- (II) Morphological deformation
- (III) Non-parallel slabs
- (IV) Missing / incomplete slices
- (IV) Autoradiograph slice acquisition

Preprocessing

Target Tissue Mask Cropped Image

Rigid 2D Autoradiograph Alignment

MRI to Autoradiograph Volume Alignment

- Grey : Warped MRI GM mask
- Red : Receptor volume GM mask

Interpolating missing autoradiographs

- Morphologically adaptive, distance-weighted interpolation
- Reconstructed GABA-A_{Benz} volume
 - Ligand = Flumazenil
 - Green = acquired autoradiographs

GABAA.Benz.

GABAA.Ant.

Interslab Interpolation

• Volumetric interpolation

Inter/intra-slab Interpolation

• Surface-based interpolation

Inter/intra-slab Interpolation

• Surface-based interpolation

Preprocessing of all autoradiographs

- Semi-automated and manual cropping
- ~18,000 autoradiographs
- 3 brains x 2 hemispheres \rightarrow ready for reconstruction

4	٢.	•					•		~						+				•		\Box
2L#hg#	QP#hg# MP3c2#P	RX#HG# MR3c5#L	RX#HG# MR3c5#L	QF#HG# MP1s1#I	Qi#hg#M P1c5#L#	QK#hg# MP2s2#I	RS#HG# MP2c5#P	RQ#HG# MP2c3#P	QL#hg# MP2S3#I	RD#HG# MP1c3#P	QQ#hg# MP3c3#P	QS#hg# MP3c5#P	QS#hg# MP3c5#P	RR#HG# MP254#P	RS#HG# MP2s5#P	QM#hg# MP2s4#I	RU#hg# MR3c2#L	RF#hg# MP1c5#P	RX#HG# MR3s5#L	RQ#HG# MP2c3#F	RD#HG#
dpat#	#musc	#praz#	#keta#	#epib#	mk80#	#cgp5#	#musc	#flum#	#afdx#	#damp	#musc	#epib#	#cgp5#	#ampa	#dpat#	#epib#	#praz#	#rx82#	#musc	#keta#	. #praz#
								1				4	\rightarrow						•		Φ
M#hg# R2s4#L	RV#HG# MR3S3#L	RW#HG# MR354#L	QY#HG# MR1s2#R	RS#HG# MR2S5#R	RF#hg# MR1s5#R	OL#hg# MR1s6#L	QR#hg# MR3s4#R	RD#HG# MR1s3#R	RG#HG# MR1S6#R	QW#HG# MR1s1#R	QK#HG# MR2S2#L	QF#HG# MR1s1#L	RW#HG# MR3S4#L	RX#HG# MR3s5#L	QS#hg# MR3s5#R	RD#HG# MR1s3#R	QR#HG# MR3S4#R	QS#hg# MR3s5#R	RX#HG# MR3s5#L	RQ#HG# MR2s3#R	RD#HG#
ampa	#kain#	#praz#	#praz#	#cgp5#	#keta#	#afdx#	#dpat#	#oxot#	#pire#	#sr95#	#rx82#	#kain#	#rx82#	#epib#	#mk80	#sch2#	#flum#	#dpat#	#oxot#	#flum#	. #pire#
	•						٢_		•	-		4		*				-			
R2S3#L	RS#HG# MR2s5#R	RF#hg# MR1s5#R	QQ#hg# MR3s3#R	QY#HG# MR1s2#R	RS#HG# MR2s5#R	QR#hg# MR3s4#R	RE#HG# MR1s4#R	QP#HG# MR3S2#R	RS#HG# MR2S5#R	RP#HG# MR2s2#R	RU#hg# MR3s2#L	QP#hg# MR3s2#R	RT#HG# MR3S1#L	RP#HG# MR2s2#R	RX#HG# MR3s5#L	RX#HG# MR3s5#L	QM#hg# MR2s4#L	Ro#HG# MR2s1#R	QO#hg# MR3s1#R	PD#hg# MR1s3#L	QS#HG# MR355#R
rx82#	#pire#	#cgp5#	#kain#	#sch2#	#sch2#	#cgp5#	#dpat#	#cgp5#	#damp	#kain#	#cgp5#	#uk14	#oxot#	#sr95#	#praz#	#ampa	#keta#	#ampa	#rx82#	#mk80	. #flum#
					r		~										2				4
1s5#L#	QP#hg# MR3s2#R	QO#hg# MR3s1#R	RS#HG# MR2s5#R	QL#hg# MR2S3#L	RR#HG# MR2S4#R	RG#hg# MR1s6#R	MR1S3#L	Qi#hg#M R1s5#L#f	QJ#HG# MR2s1#L	QM#hg# MR2s4#L	OL#hg# MR1s6#L	QF#HG# MR1s1#L	QY#HG# MR1s2#R	RQ#HG# MR2s3#R	QP#hg# MR3s2#R	QH#hg# MR1s4#L	RV#HG# MR3S3#L	QH#hg# MR1s4#L	QM#HG# MR2S4#L	MR3S1#L	L MR1s1#L
mpa#	#afdx#	#kain#	#dpmg	#keta#	#cgp5#	#keta#	#dpat#	lum#60	#afdx#	#cgp5#	#mk80	#sr95#	#cgp5#	#sch2#	#epib#	#sch2#	#musc	#ly34#	#pire#	#afdx#	. #oxot#
						0.400												-		0.000	
IR1s6#L	MR3S1#R	MR3S1#L	MR2s5#R	MR1s4#L	MR2s5#R	MR1S6#L	MR2s5#L	MR2s1#R	MR1S6#R	MR3s2#L	MR1S3#L	MR2S4#R	MR1s2#R	QP#ng# MR3s2#R	MR1s1#L	MR1S2#L	MR2s5#R	MR3S1#L	MR1s5#R	MR2s1#L	_ MR352#R
kain#	#pire#	#uk14	#keta#	#sch2#	#mk80	#rx82#	#dpmg	#musc	#flum#	#ly34#	#dpmg	#praz#	#cgp5#	#kain#	#keta#	#musc	#sr95#	#damp	#epib#	#flum#	. #dpat#
5			DE#ba#	OK#ba#	05#446#		OB#ba#	DV#HC#		DS#NC#			Ol #ba#	OB#ba#	PX#4C#		OB#ba#	00#ba#	DV#UC#	DD#bo#	OL #ba#
R2s5#R	MR3s3#L	MR2s1#L	MR1s5#R	MR2s2#L	MR3S5#R	MR1s6#L	MR3s2#R	MR3s5#L	MR1s1#L	MR2s5#R	MR3S3#L	MR1s1#R	MR1s6#L	MR3s4#R	MR3s5#L	MR3s3#R	MR3s2#R	MR3s1#R	MR3s3#L	MR1s3#L	MR1s6#L
dpat#	#ardx#	#ampa	#oxot#	#ly34#	#dpmg	#keta#	#musc	#cgp5#	#sr95#	#ly34#	#praz#	#uk14	#musc	#mk80	#musc	#flum#	#dpat#	#epib#	#afdx#	#afdx#	. #oxot#
E#HG#	RD#HG#	Ol #ba#	Ol #ba#	RO#HG#	OW#HG#	OR#ba#	01#HG#	Oi#ba#M	OP#ha#	RR#HG#	RW#HG#	OY#HG#	00#HG#	OG#ba#	OS#ba#	OW#HG#	00#HG#	RX#HG#	RO#HG#	OM#ha#	
R1s1#L	MR1s3#R	MR1s6#L	MR2S3#L	MR2s3#R	MR1s1#R	MR3s4#R	MR2s1#L	R1s5#L#	MR3s2#R	MR2S4#R	MR3S4#L	MR1s2#R	MR3S1#R	MR1s2#L	MR3s5#R	MR1s1#R	MR3S1#R	MR3s5#L	MR2s3#R	MR2s4#L	MR153#L
praz#	#mk80	#SF95#	#opac#	#ГХ82#	#rx82#	#mk80	#\$195#	ampa#	#0X0C#	#scn2#	#kain#	#rx82#	#pire#	#UK14	#keta#	#Iy34#	#ampa	#keta#	#opat#	#arox#	. #0X0C#
V#HG#	OK#ha#	RF#ha#	OH#ha#	RE#ha#	OL#ha#	PD#ha#	RU#ha#	Ro#HG#	RV#HG#	OW#HG#	RU#ha#	RS#HG#	OO#ha#	OJ#HG#	RO#ha#	OW#HG#	OL#ha#	OF#HG#	OF#HG#	RO#HG#	RR#HG#
R3s3#L	MR2S2#L	MR1s5#R	MR1s4#L	MR1s4#R	MR2S3#L	MR1s3#L	MR3s2#L	MR2s1#R	MR3S3#L	MR1S1#R	MR3s2#L	MR2s5#R	MR3s3#R	MR2s1#L	MR2S3#R	MR1s1#R	MR1s6#L	MR1s1#L	MR1s1#L	MR2s3#R	R MR254#R
	#upmg	#111K80	#ty54#	#Kdifi#	#cgp5#	#musc	#ardX#	#5012#	#Kdifi#	#uping	#111K80	#pire#	#arux#	#UK14	#ty54#	#UK14	#UK14	#ampa	#upat#	#praz#	. #111880
0H#hg#	OW#HG#	QM#hg#	QK#hg#	RS#HG#	PD#hg#	Ro#HG#	Ro#HG#	QM#hg#	RW#HG#	RS#HG#	RS#HG#	ON#hg#	QS#hg#	RV#HG#	PD#HG#	QR#hg#	ON#hg#	RW#HG#	QJ#HG#	QJ#HG#	OW#HG#
R1s4#L	MR1s1#R #epib#	MR2s4#L #cap5#	MR2S2#L	MR2s5#R #keta#	MR1s3#L #damp	MR2s1#R #flum#	MR2s1#R #dpat#	MR2s4#L	MR3S4#L #ampa	MR2s5#R #musc	MR2S5#R #cap5#	MR2s5#L	MR3s5#R #afdx#	MR3s3#L #cap5#	MR1S3#L #praz#	MR3s4#R #ampa	MR2s5#L #lv34#	MR3S4#L #mk80	MR2s1#L #dpat#	MR2s1#L #cap5#	MR151#R
	cp.o						apacition														

GM Segmentation

- Segmentation with deep neural nets
 - Network learns intensity thresholds instead of shapes
- Solution: make learning task harder
 - \rightarrow nudge network away from simple intensity thresholding
- Learning targets :
 - Prior cortical segmentation
 - Distance map from cortex
 - Cortical border

GM Segmentation

Future Perspectives

• Multi-modal receptor mapping \rightarrow novel atlases

- Receptor Targets of DBS
 - Acetylcholine and dopamine (Udapa & Chen, 2015)
- Computational Modeling
 - HIBALL

Application: PET simulation and resolution

PET resolution

PET resolution

Receptor volumes for PET simulation

• Previous simulations used large, uniform regions

(Mazziotta, et al 1981)

(Castiglioni, et al 2005)

(Reilhac et al, 2005)

Receptor volumes for PET simulation

- Previous simulations used large, uniform regions
- 3D GABA-A_{Benz} atlas \rightarrow Ground truth for PET simulation
- PET simulation performed with Gate
 Digital PET scan simulates most of the physics of acquisition
 Scanner : Siemens ECAT HRRT (Bataille, et al. 2004)

Example Application : PET Simulation

GABA-A_{Benz.} receptor volume

Theoretical Maximum PET Resolution

- Local correlation 5mm³: 0.71 +/- 0.09
 - Kendall's Tau

Future Perspectives

- Sub-millimeter PET Receptor Atlases
 - 1.2mm FWHM PET scanners + PVC (<1mm?) \rightarrow Laminar PET?

Conclusions

- Reconstruction of 3D receptor atlases
 - Proof-of-principle for pipeline \rightarrow up to 50um
 - 3 brains x 2 hemispheres x 20 receptors
- Realistic PET simulation
 - Simulated PET from gold-standard receptor distribution
 - Evaluate maximum effective PET spatial resolution
 - Validate resolution-enhancement & quantification algorithms

Questions, comments, suggestions : thomas.funck@mail.mcgill.ca

Acknowledgments

<u>Jewish General Hospital</u> PhD Supervisor: Alexander Thiel, MD, PHD

<u>Montreal Neurological Institute</u> PhD Supervisor: Alan C. Evans, PhD Claude Lepage, PhD Paule-Joanne Toussaint, PhD Mona Omid, PhD

<u>Julich Forschungszentrum</u> Karl Zilles, MD, PhD Nicola Palomero-Gallagher, PhD

<u>University College London</u> Konrad Wagstyl

Jewish General Hospital Lady Davis Institute for Medical Research

Funding:

- Federal Ministry of Education and Research (BMBF) project number 01GQ1902
- Ann and Richard Sievers Neuroscience Award
- Canadian Institutes for Health Research (CIHR)
- The Healthy Brains for Healthy Lives initiative

Interslab Interpolation

• Volumetric interpolation

- 1) Dilate mask of receptor slabs
- 2) Find border voxels inside MRI GM mask
- 3) For each voxel calculate average within 3x3x3 kernel
- 4) Add interpolated voxels to receptor slab mask
- 5) Step 1

